Vertical bagging decision trees model for credit scoring
نویسندگان
چکیده
0957-4174/$ see front matter 2010 Elsevier Ltd. A doi:10.1016/j.eswa.2010.04.054 * Corresponding author. E-mail addresses: [email protected] (D. Zhan Zhou), [email protected] (S.C.H. Leung). In recent years, more and more people, especially young people, begin to use credit card with the changing of consumption concept in China so that the business on credit cards is growing fast. Therefore, it is significative that some effective tools such as credit-scoring models are created to help those decision makers engaged in credit cards. A novel credit-scoring model, called vertical bagging decision trees model (abbreviated to VBDTM), is proposed for the purpose in this paper. The model is a new bagging method that is different from the traditional bagging. The VBDTM model gets an aggregation of classifiers by means of the combination of predictive attributes. In the VBDTM model, all train samples and just parts of attributes take part in learning of every classifier. By contrast, classifiers are trained with the sample subsets in the traditional bagging method and every classifier has the same attributes. The VBDTM has been tested by two credit databases from the UCI Machine Learning Repository, and the analysis results show that the performance of the method proposed by us is outstanding on the prediction accuracy. 2010 Elsevier Ltd. All rights reserved.
منابع مشابه
Two credit scoring models based on dual strategy ensemble trees
Decision tree (DT) is one of the most popular classification algorithms in data mining and machine learning. However, the performance of DT based credit scoring model is often relatively poorer than other techniques. This is mainly due to two reasons: DT is easily affected by (1) the noise data and (2) the redundant attributes of data under the circumstance of credit scoring. In this study, we ...
متن کاملImproving experimental studies about ensembles of classifiers for bankruptcy prediction and credit scoring
Previous studies about ensembles of classifiers for bankruptcy prediction and credit scoring have been presented. In these studies, different ensemble schemes for complex classifiers were applied, and the best results were obtained using the Random Subspace method. The Bagging scheme was one of the ensemble methods used in the comparison. However, it was not correctly used. It is very important...
متن کاملCredit scoring with boosted decision trees
The enormous growth experienced by the credit industry has led researchers to develop sophisticated credit scoring models that help lenders decide whether to grant or reject credit to applicants. This paper proposes a credit scoring model based on boosted decision trees, a powerful learning technique that aggregates several decision trees to form a classifier given by a weighted majority vote o...
متن کاملThe Use of Genetic Algorithm, Clustering and Feature Selection Techniques in Construction of Decision Tree Models for Credit Scoring
Decision tree modelling, as one of data mining techniques, is used for credit scoring of bank customers. The main problem is the construction of decision trees that could classify customers optimally. This study presents a new hybrid mining approach in the design of an effective and appropriate credit scoring model. It is based on genetic algorithm for credit scoring of bank customers in order ...
متن کاملLarge Unbalanced Credit Scoring Using Lasso-Logistic Regression Ensemble
Recently, various ensemble learning methods with different base classifiers have been proposed for credit scoring problems. However, for various reasons, there has been little research using logistic regression as the base classifier. In this paper, given large unbalanced data, we consider the plausibility of ensemble learning using regularized logistic regression as the base classifier to deal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 37 شماره
صفحات -
تاریخ انتشار 2010